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a b s t r a c t

Based on a previously constructed, consistent version of the geometrically non-linear equations of elas-
ticity theory, for small deformations and arbitrary displacements, and a Timoshenko-type model taking
into account transverse shear and compressive deformations, one-dimensional equations of an improved
theory are derived for plane curvilinear rods of arbitrary type for arbitrary displacements and revolutions
and with loading of the rods by follower and non-follower external forces. These equations are used to
construct linearized equations of neutral equilibrium that enable all possible classical and non-classical
forms of loss of stability (FLS) of rods of orthotropic material to be investigated, ignoring parametric defor-
mation terms in the equations. These linearized equations are used to find accurate analytical solutions
of the problem of plane classical flexural-shear and non-classical flexural-torsional FLS of a circular ring
under the combined and separate action of a uniform external pressure and a compression in the radial
direction by forces applied to both faces.

© 2009 Elsevier Ltd. All rights reserved.

Fundamental results associated with the construction of geometrically non-linear equations of the theory of elastic and inelastic rods
for arbitrary displacements, and also with the study of their forms of loss of stability (FLS) under various types of conservative and non-
conservative loads, were obtained as long ago as the middle of the twentieth century (see, for example, Ref. 1). The need for further
and more extensive investigations of rod stability theory arose unexpectedly in the light of the results of recent studies.2–4 According
to these results, for small deformations, the use of kinematic relations in the quadratic approximation, that are well known in geomet-
rically non-linear elasticity theory, and considered to be absolutely correct in all the scientific and academic literature, produces “false”
bifurcation solutions under certain types of loading. For the case of small deformations, a consistent version was constructed, and the
simplest examples of its application were considered, involving the reduction of the two-dimensional non-linear problem of deformation
of a strip in the form of a rod to one-dimensional equations and their subsequent use to determine the possible FLS under characteristic
types of loading. The fundamentally novel results that were obtained in this case concerned the FLS of rods under uniform transverse
compression and pure shear3 and also novel non-classical FLS of cylindrical shells for certain types of loading, which were based on the
linearized equations of momentless shell theory.4 These investigations were then continued5 in the context of constructing consistent
equations of the theory of thin shells for small deformations and arbitrary displacements, the identification of all possible FLS of a cylin-
drical shell under torsion on the basis of these equations, the construction of general linearized equations of elastic stability theory for
rectilinear rods, and the investigation, on the basis of these, of all possible classical and non-classical FLS under different types of loading by
conservative forces.

Developing the results described above, in the present paper for plane curvilinear rods of general form, based on Timoshenko’s kinematic
model, taking transverse shear and compressive deformations into account, consistent equations of the geometrically non-linear theory
of plane curvilinear rods under arbitrary displacements are constructed, the use of which enables us to identify all their possible classical
and non-classical FLS under the action of “dead” and “follower”1 external forces.
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1. Kinematic relations

For the space occupied by the rod, we will assume the following parameterization

(1.1)

where r(x) is the equation of the centreline L relative to the natural parameter x, and t = r′ = dr/dx, n and b are unit vectors of the natural
basis on L. Here, b = t × n, |t| = |n| = 1, and, for a line with zero torsion of the plane curve, the Seret-Frenet formulae hold:

(1.2)

where k is the curvature of the curve L.
In the parameterization adopted (Eq. (1.1)), by virtue of Eqs (1.2), the Lamé parameters

will take the form

(1.3)

and the tensile strains �1, �2 and �3 and shear strains �12, �13 and �23 in the complete quadratic approximation, the use of which does not
produce “false” bifurcation solutions, are expressed in terms of the displacement components U1, U2 and U3 by the formulae2,6

(1.4)

(1.5)

Below, we will assume that the rod is thin, and that its curvature k and cross-sectional dimensions satisfy the condition |yk| ∼ �, where
� « 1. By virtue of this condition, in formula (1.5), with an accuracy of 1 + � ≈ 1, we can assume that H1 ≈ 1, and for the displacement vector
U = U1t + U2n + U3b we will adopt the representation

(1.6)

in which the one-dimensional functions u, � and w of argument x are components of the displacement vector u of points of the centreline
L, and �, � and � are components of the vector of revolutions � about the unit vectors n, b and t, while the functions �2 and �3 describe
the transverse deformations of the rod.

If expressions (1.6) for U1, U2 and U3 are introduced into formulae (1.5), then, within the approximation H1 ≈ 1, apart from terms
containing y and z, for determining E�� (�, � = 1, 2, 3) we can obtain the approximate formulae

(1.7)

When these are substituted into formulae (1.4), with the same degree of accuracy, for �1, we will obtain the approximate expression

(1.8)

where

(1.9)
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for �2 and �3 we will obtain the “accurate” expressions

(1.10)

and for the shear deformations �12 and �13 we will obtain unsimplified relations of the form

(1.11)

In accordance with earlier results,5 it is acceptable to adopt relation (1.11) in simplified form, ignoring terms with the fac-
tor y in the first relation and terms with the factor z in the second. Here, as in expressions (1.8) and (1.10), the principal terms
should be retained with the adopted degree of accuracy, which, within the framework of the refined Timoshenko model, enables the
tensile–compressive and flexural deformations in the y and z directions and the transverse shear deformations in xy and xz planes to be
described by their averaged values over the cross-sections, and also the torsional deformation within the framework of the classical rod
model.

2. The geometrically non-linear equations of equilibrium

Introducing the hypothesis 	23 = 0 to describe the deformation of rods, we obtain the following expression for the variation of the
deformation potential energy

(2.1)

After using expressions (1.8) to (1.11) and introducing the notation for the internal forces and moments

(2.2)

we can reduce expression (2.1) to the form

(2.3)
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where

(2.4)

If the rod material is orthotropic, where the orthotropy axes coincide with the x, y, and z axes, then the stress components for linearly
elastic behaviour that occur in expressions (2.1) and (2.2) are related to the strain components (1.8), (1.10) and (1.11) by the equations of
elasticity

(2.5)

in which G12 and G13 denote the shear moduli, while the elastic characteristics g�� = g�� (�, � = 1, 2, 3) are expressed in terms of the elastic
moduli E1, E2 and E3 and Poisson’s ratios 
�� by the well-known relations (see, for example, Ref. 7).

Below we will assume that, in each cross-section of the rod x = const, the y and z axes are the principal central axes of inertia. Then, from
expressions (1.8), (1.10), (1.11), (2.5) and (2.2), we obtain the physical relations

(2.6)

where Jy and Jz are the principal moments of inertia of the transverse cross-section.
Suppose the contour of each cross-section of the rod x = const is specified by the parametric equations yl = yl(l) and zl = zl(l), where l is

the length of the arc along the directrix, and all external surface forces acting on the rod at points of its lateral surface S are represented by
the expansion
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The variation of the work of these forces on possible displacements

and also of the volume forces

on possible displacements �U will be equal to

(2.7)

where, by virtue of the fact that the y and z axes in each cross-section are the principal central axes of inertia for the external forces and
moments introduced into consideration, reduced to the rod centreline, the following formulae hold

(2.8)

Below, the external surface forces ps introduced into consideration will be regarded as reduced to four linear force vectors P+, P−, �+

and �− applied at points on the lines with coordinates (x, y+, 0), (x, y−, 0), (x, 0, z+) and (x, 0, z−). The displacement vectors of points on
these lines will be

(2.9)

If the force vectors P± and F± are specified by the expansions

(2.10)

and, during deformation, they maintain their directions, then, by using expressions (2.9), formulae (2.8) will take the form

(2.11)

We will use p1 to denote the vectors of the specified surface forces applied at points of the end cross-sections x = x− and x = x+. If, during
deformation of the rod, these vectors retain their directions and are specified by the expansions

(2.12)

then the work completed by them on variations of the corresponding displacements will be equal to

(2.13)
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where

(2.14)

Now, introducing expressions (2.3), (2.9) and (2.13) into the variational equation of the principle of virtual displacements
�U − �A1 − �A2 = 0, we obtain the equation

(2.15)

from which we obtain a system of eight ordinary differential equations of equilibrium

(2.16)

relative to the undeformed axes, and the corresponding static boundary conditions

(2.17)

If the directions of action of the external forces change during the deformation of the rod, then it must be ascertained how their
orientation will change in relation to the vectors t, n and b. Besides these vectors, the following basis vectors are also associated with the
space of the rod

(2.18)

Of these, the vectors R∗
2 and R∗

3 retain their directions at all points of the cross-section, while the vector R∗
1 at points of the deformed

centre-line L* will be equal to

(2.19)

In accordance with Eq. (2.19) for the unit vector t* tangential to line L*, we have the expression

(2.20)

where

Using expression (2.20), from well-known formulae of differential geometry we can obtain expressions for two other unit vectors n*

and b* of the accompanying triangle of the deformed curve L*. Under small strains, the following unit vectors are practically identical to
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them in direction

(2.21)

where

In the case of small tensile strains �1, �2 and �3, in formulae (2.20) and (2.21) it can be assumed that �1 ≈ 1, �2 ≈ 1 and �3 ≈ 1. Here, with
the aim of constructing a consistent version of rod theory in a non-linear quadratic approximation in accordance with results obtained
earlier,5,6 simplified expressions must be adopted for the vectors t*, r∗

2 and r∗
3:

(2.22)

(2.23)

Then, using these expressions, we obtain the equations

from which we then find the relations

(2.24)

Introducing these relations into expressions (2.23), we obtain the two unit vectors

(2.25)

which, while remaining orthogonal to the vector t* during the deformation of the rod, with the adopted degree of accuracy, can be considered,
together with vector (2.22), to be identical to the vectors of the accompanying triangle of the deformed curve L*.

The vectors of the surface forces p1 applied in the end cross-sections x = x− and x = x+ will now be represented in the form of the expansion

(2.26)

Introducing expressions (2.22) and (2.25), we obtain a representation in the form of Eq. (2.12), in which the components p11, p12 and p13
are not specified but are expressed in terms of the specified components p11, p12 and p13 by the formulae

(2.27)

If, by analogy with system (2.14), we introduce the notation

(2.28)

then, by substituting relations (2.27) into formulae (2.14), with an accuracy

∫ ∫

F

p̃12ydF =
∫ ∫

F

p13zdF = 0 we can obtain the relations

(2.29)

which can be used to formulate the boundary conditions in the cross-sections x = x− and x = x+, depending on the clamping conditions and
the form of end loading expressed by Eq. (2.26). For example, when p̃11 = const and p̃12 = p̃13 = 0, from formulae (2.28) we will have

(2.30)
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Therefore, if kinematic clamping conditions are imposed in the cross-sections x = x− and x = x+

(2.31)

and �� /= 0, �� /= 0, ��2 /= 0 and ��3 = 0, then, on the basis of conditions (2.17), taking Eqs (2.31) into account, and using relations (2.29),
the following static boundary conditions will be formulated

which correspond to an end compression of the rod that ‘follows’ the direction of vector t*.
Along with Eq. (2.26), for p1 it is advisable also to consider the equation

(2.32)

the use of which, together with Eq. (2.12) and relations (2.22) and (2.23), leads to the relations

(2.33)

By introducing these relations into formulae (2.14), we will obtain

(2.34)

where ˜̃M
s

y, . . ., ˜̃S
s

xz denote end forces and moments similar to the internal forces and moments described by formulae (2.14) but calculated
in terms of the components ˜̃p�.

However, if instead of Eq. (2.32) for p1 we adopt the equation

(2.35)

where

then the components p1� and ˜̃p1� in Eqs (2.12) and (2.35) will be related by the equations

which, using expressions (1.7), are transformed into

(2.36)
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and, by substitution into formulae (2.14), are reduced to the one-dimensional relations

(2.37)

Note that, unlike to approximate relations (2.34), the established relations (2.37) have the same degree of accuracy as one-dimensional
relations (2.4). They are simplified considerably if the surface forces ˜̃p11, ˜̃p12 and ˜̃p13 are calculated by means of the formulae of classical
rod theory

(2.38)

in accordance with which ˜̃S
s

xy = ˜̃S
s

xz = 0 and only six forces and moments ˜̃Q
s

x, ˜̃Q
s

y, ˜̃Q
s

z , ˜̃M
s

x, ˜̃M
s

y and ˜̃M
s

z , which are statically equivalent to the

surface forces, need be considered specified. Here, for the moments ˜̃M
s

xy and ˜̃M
s

xz , the following formulae hold

(2.39)

the substitution of which into the formula ˜̃M
s

x = ˜̃M
s

xz − ˜̃M
s

xy leads to an identity.
We will now assume that the components of the vectors P± and �± also “follow” the directions of the vectors t*, n* and b* defined by

formulae (2.22) and (2.23), i.e., we have

(2.40)

Introducing expressions (2.22) and (2.23) here, we obtain equations of the form (2.10), in which the components P±
j

and ˚±
j

will be

expressed in terms of the specified components P̃±
j

and ˜̊ ±
j

(j = 1, 2, 3) by the formulae

(2.41)

Substituting these formulae into Eqs (2.17), the forces and moments of the external forces in the equilibrium equations (2.16) are
determined.

Along with the derived version of relations (2.41), it is advisable also to set up similar relations that correspond to loading of the rod
with forces that “follow” the directions of the basis vectors t*, r∗

2 and r∗
3 of the deformed state. In this case, the components of the vectors
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P± and �± in the equations

(2.42)

must be considered specified.
To obtain consistent relations, expressions (2.22) and (2.23) must be introduced into Eqs (2.34) and (2.35), which, instead of Eq. (2.33),

enables the following relations to be obtained

(2.43)

3. The linearized equations of neutral equilibrium and their analysis

When expressions (2.6) are substituted into formulae (2.4) for the forces and moments entering Eq. (2.3), then Eqs (2.16) and conditions
(2.17) prove to be extremely unwieldy. Their analysis shows that they contain both the “principal” terms present in well-known equations
of flexible rod theory, derived by introducing greater constraints than those imposed above, and other (“non-principal”) terms that are
related, in particular, to the introduction of additional unknowns �2 and � 3 to allow for transverse deformations of the rod. As follows from
an analysis of results obtained earlier,3,5 whether particular terms in relations (2.4) and (2.6) can be ignored depends mainly on the nature
of external loading of the rod and on the type of stress state produced in it. Here, to estimate the degree to which the terms in expressions
(2.4) are principal terms, one criterion can be the degree to which they influence the possibility of particular forms of loss of stability by
the rod.

In this context, we will assume that, at a certain stage of loading of the rod, an initial stress state is formed characterized by the initial
forces and moments Q 0

x , Q 0
y , . . ., M0

xz , M0
x = M0

xz − M0
xy. If, in the vicinity of this equilibrium state, relations (2.4) are linearized by introducing

the standard assumptions that the increments in the functions u, �, w, �, �, �, �2 and �3 are small and equal to zero in the initial state, we
obtain the following expressions for the increments in the forces and moments Q ∗

x , . . . , N∗
z

(3.1)
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in which, unlike relations (2.6),

(3.2)

Using the last two expressions in system (3.2), for the internal torque we obtain the relation

(3.3)

where Bp = G13Jz + G12Jy is the torsional stiffness of the cross-section of a rod of orthotropic material, introduced into an earlier examination5

of a straight rod.
If, for certain values of the “dead”1 external forces applied to the rod, not only the initial equilibrium state but also a perturbed equilibrium

state are possible, then, to determine their bifurcation values at which a transition from the initial state of equilibrium to the perturbed
state occurs, use is made of the variational equation �U = 0, in which the expression for �U is identical in form to expression (2.3). From this
equation, after standard conversions, we obtain a system of eight homogeneous differential equations of neutral equilibrium

(3.4)

and the static boundary conditions in the end cross-sections of the rod x = x− and x = x+

(3.5)

Using relations (3.1) and (3.2), Eqs (3.4) can be reduced to the form

(3.6)
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(3.7)

where

(3.8)

It can be seen that the differential expressions L1i (i = 1, 2, 3) and L2j (j = 1, . . ., 5) contain different required functions. Therefore, when,
as a result of the action of “dead” forces, only the initial forces and moments

are formed in the rod, and Q 0
z = M0

y = M0
xy = M0

xz = 0 (consequently, M0
x = M0

xz − M0
xy = 0), systems (3.6) and (3.7) become isolated.

The first of these systems, which takes the form

(3.9)

describes the flexural-torsional FLS of the rod when k /= 0, but, when T0
z is the only force formed, it describes the purely flexural FLS of

a straight-axis rod.5 Based on the most common version of the kinematic relations occurring under average bending, in Eqs (3.9) there
remains only one parametric term (Q 0

x w′)′, which is the principal term. However, when Q 0
x = 0, other parametric terms become the principal

terms in Eqs (3.9), again leading to loss of stability of the rod. Some of these were studied earlier for a rectilinear rod.5

In the case considered, the second system of equations (3.7) takes the form

(3.10)

Without loss of content or accuracy, the equations compiled allow considerable simplifications if the equations Sxz = Sxy = 0 are considered
to hold. This is equivalent to determining the shear deformations by relations (1.11), in the first of which the term with the factor y is
discarded, and in the second of which the term with the factor z is discarded. Here, from the last two equations of system (3.10), the
functions �2 and �3 can easily be expressed in terms of the three remaining functions u, � and �. As a result of such transformations, we
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can obtain a separate system of equations for the functions u, � and �, in which the term [Q 0
x (�′ + ku)]′ of the first equation is the main

parametric term defining the flexural FLS in the direction of the y axis. The other FLS described by this system of equations for a rod with
a rectilinear axis were studied earlier for certain special cases of loading.5

If the external forces are “follower” forces, then, after linearization, assuming that the rod is under stress but not deformed in the initial
state, we obtain equations of neutral equilibrium of the same form as Eqs (2.16). The “loading” terms will be defined by the same formulae
(2.11), in which the quantities P±

j
and ˚±

j
are defined by linearized expressions (2.33) having the form

(3.11)

if the external forces are specified by the components P̃±
j

and ˜̊ ±
j

. In this case, for the linearized equations boundary conditions (2.17) also
retain their form, and here, unlike relations (2.9), the “loading” terms will be defined by the formulae

(3.12)

In the case of when the “follower” external forces are specified by the components P̃±
j

and ˜̊ ±
j

, after linearization of expressions (2.43), the
underlined terms disappear.

4. Forms of loss of stability of a circular ring for external pressure and compression in the radial direction

Suppose a circular ring of rectangular cross-section that has a centre-line radius R = 1/k, a width b and a thickness 2 h is loaded with a
pressure on its outer and inner surfaces z = ± h so that, for the initial stresses �0

22, the following boundary conditions are satisfied

With such a form of loading in a ring for which 2 h « R, the initial (subcritical) forces can be represented in the form

(4.1)

When the rod is exposed to external pressure p only, the relation rq ≈ � « 1 holds. Since the remaining internal stresses and moments of the
initial state are zero, when relations (3.8) and (4.1) are used the system of equations (3.9) takes the form

(4.2)

if the external forces p and q are “dead”.
From the first equation in system (4.2), which describes the flexural-torsional FLS of a ring without linear deformation of its centre-line,

the following relation is established after the integration constant has been neglected:

(4.3)

When this relation is used, we obtain another relation from the second equation in system (4.2):

(4.4)

If the function w is now represented in the form

(4.5)

then, using relations (4.3) and (4.4), from the third equation in system (4.2), under the condition Wn /= 0, we obtain the characteristic
equation

(4.6)
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where

(4.7)

we will first consider two special cases.

1◦. Let rq ≈ 0, which corresponds to the classical formulation of the problem of the stability of a ring under an external pressure P, where
the effect of the formation of the initial stress �0

22 in the radial direction in the rod on the bifurcation value P* is ignored. In the case
considered, from Eq. (4.6) we obtain the following formula for P*

(4.8)

which, when n = 0, takes the form

(4.9)

The given bifurcation value of the load P, to which the solution with zero variability of the functions �, � and w with respect to the
circumferential coordinate of the ring corresponds, has no physical significance.

2◦. Let P = 0 and T0
y /= 0, which corresponds to simultaneous external and internal pressure on the ring in the radial direction. In the case

considered, instead of Eq. (4.6), we obtain the equation �2Fq = �, which yields the following expression for q*

(4.10)

When n = 0, this takes the form

(4.11)

and, like formula (4.9), has no physical significance.When P /= 0 and T0
y /= 0, with a specified value of parameter rq, the bifurcation values

of the load P will be equal to the roots

(4.12)

of a quadratic equation, and the determination of its minimum positive value requires minimization of roots (4.12) with respect to the
integer parameter n.

A second system of equations, describing the FLS of a rod in the sy plane, using formula (4.1) in approximation Sxy = Szx = 0, takes the
form

(4.13)

For a thin-walled rod, with an accuracy 1 + �2 ≈ 1 we have the approximate equation
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Therefore, from the last two equations in system (4.13) we obtain the relations

(4.14)

the use of which, with an accuracy 1 + �2 ≈ 1, reduces system (4.13) to a system of three equations

(4.15)

where E1 is the modulus of elasticity in the direction of the s axis.
For zero variability of the functions u, � and � in the s direction, the first equation in system (4.15) has the solution � = 0, while the

remaining two equations take the form

(4.16)

When rq = 0, under the conditions � /= 0 and u /= 0, the characteristic equation of system (4.16) leads only to the bifurcation value P* = 0,
but with P = 0, when rqRP = Fq, we obtain the bifurcation value q* = 0.

Consequently, the adopted degree of accuracy of approximation of displacements in the form of Eq. (1.6) is insufficient to describe the
purely shear FLS of the rod that occur, as established,3,5 under the critical loads P∗

s = FG12/R and q∗
s = G12. However, it should be noted that

these solutions are of no interest in pratice, as the bifurcation values (4.8) and (4.10) corresponding to flexural-torsional FLS of the rod and
also the plane flexural-shear FLS described by Eqs (4.15) with non-zero variability of the functions occurring in them are lower than the
values for real rods. When the notation  = �′ + ku and �1 = u′ − k� is introduced, the first of these is rewritten in the form of the relation

(4.17)

the use of which results in the third equation taking the form

(4.18)

From the second equation of system (4.15) we obtain the relation

(4.19)

substitution of which into Eq. (4.18) yields the resolvent of the problem

(4.20)

Representing the function � in the form

(4.21)

under the condition �n /= 0, from Eq. (4.20) we obtain the characteristic equation

(4.22)

In the general case, when non-zero forces P and q are both applied to the rod, the characteristic equation (4.18) can be represented in
the form of Eq. (4.6), where

(4.23)

The roots of this equation are defined by formula (4.12), and from it, with rq = 0, we obtain the bifurcation value

(4.24)

and, with P = 0 and rqRP = Fq, for the bifurcation value we have

(4.25)

The minimum P* and q* values for which flexural-shear and purely flexural FLS occur in the plane of the ring are obtained when n = 2.
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It should be noted that, as for a straight rod, formulae (4.24) and (4.25) correspond to the case where conservative forces are acting on
the ring, retaining, on transition to the perturbed equilibrium state, the direction of the initial state. If forces P and q, causing the initial
forces Q 0

x and T0
y in the rod, are follower forces and directed during deformation along the normal to the centre-line, then the last two

equations in system (4.15) take the form

(4.26)

Here, the realization of only one flexural-shear FLS is possible, described by the resolvent

(4.27)

Its non-trivial solution is possible with a bifurcation value of the load P

(4.28)

and here, as by formula (4.24), Pfs
∗ reaches a minimum value when n = 2.

Note that, in the formula derived, as in Eq. (4.24), the coefficient k12 appears because transverse shear has been taken into account. It
differs from the classical formula in containing, instead of the modulus of elasticity E1, the parameter

which, in all the equations derived, appears naturally by reducing the initial three-dimensional problem to a one-dimensional problem.
Since q11 < E1, formula (4.28) leads to a lower value of P* than the well-known classical formula

(4.29)

and the refined formula

(4.30)

We will introduce the dimensionless parameter m of the load P, connecting them by the relation

(4.31)

as well as the dimensionless defining parameters

(4.32)

When they are used, Eq. (4.6) becomes

(4.33)

where

(4.34)

When rq = 0 (q = 0, P /= 0), from relations (4.33) and (4.34) we obtain the bifurcation value of the parameter m, defined by the formulae

(4.35)

This corresponds to a flexural-torsional FLS with bending of the ring in the direction of the binormal b (the z axis).
Our investigations indicate that the minimum values of mft

∗ , defined both by formula (4.35) when rq = 0 and by the solution of Eq. (4.33)
when rq /= 0, are obtained when n = 2, when the circular ring, on transferring to the perturbed state, is transformed into a “figure of eight”.
These values for a ring with the parameters g2 = g3 = g are given in Table 1 for different values of g, k13, � and rq. It can be seen that they are

greater than mft
∗ = 4 (the classical solution of the problem of the plane flexural FLS of a ring according to the Bernoulli–Euler model under

the action of a “dead” load P, when rq = 0) only when � = 2 and g = 0.38 (an isotropic material) and for low values of rq.
Consequently, to realize a plane flexural-shear FLS in a direction perpendicular to the plane of the ring (i.e., in the direction of the z

axis), for the cross-section of the ring it is necessary to ensure a considerably greater bending stiffness than in the direction of the y axis,
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Table 1

g k13 � rq = 0 0.001 0.01 0.1 1

0.38 0 0.5 1.599 1.598 1.595 1.564 1.169
1 2.754 2.752 2.742 2.640 1.641
2 4.754 4.751 4.725 4.462 1.596

0.1 0.5 1.378 1.378 1.376 1.356 1.087
1 2.159 2.158 2.153 2.014 1.512
2 3.222 3.221 3.213 3.129 2.171

0.038 0 0.5 0.566 0.564 0.554 0.466 0.159
1 0.793 0.791 0.774 0.629 0.201
2 1.185 1.181 1.152 0.917 0.284

0.1 0.5 0.535 0.534 0.526 0.449 0.158
1 0.735 0.733 0.719 0.599 0.200
2 1.059 1.057 1.036 0.856 0.282

especially when g2 « 1 and g3 « 1 and the ring possesses low torsional stiffness Bp. This conclusion is very basic, since, in the design of real
frame structures, it is always ensured that the condition � < 1 is satisfied, assuming that, under the action of the load P, stability loss is in
plane flexural form only. However, in this case the inequality

which in current design practice is completely ignored, will always hold. True it must be pointed out that this conclusion applies only to
isolated rings, since in real frame structures they are not isolated, and the possibility of stability loss of the forms described above is also
determined by the stiffnesses of the other structural elements connected to them in the directions of the s, y and z axes.

Now suppose P = 0 and q /= 0. In this case, by introducing the parameter mq, relating it to the load q by the equation

from Eq. (4.6) we can obtain

It can be seen that m∗
q → 0 as n → ∞. Consequently, when the ring is compressed in a radial direction, flexural-shear FLS cannot occur.

At the same time, as follows from Table 1, the effect of the load q on the critical value of the force P corresponding to this FLS is considerable
at fairly high values of the parameter rq.
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